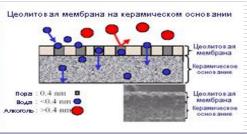


«Vapor permeation» метод

Описание:

Метод основан на использовании цеолитовой мембраны, которые представляют собой керамическую трубку с цеолитовым напылением. Паровая фаза (состоящая из води и этанола) поступает в межтрубное пространство дегидрационного аппарата; водяной пар (величина молекул которого меньше пор селективной мембраны) проходит сквозь керамическую трубку с цеолитовым напылением и увлекается вакуумным насосом. Пары этанола (величина молекул которого больше пор селективной мембраны) выходят из аппарата и поступают на конденсатор обезвоженного этанола. Движущей силой проникновения водяного пара сквозь цеолитовую мембрану является разность давления между трубным (создается вакуумным насосом) и межтрубным пространством (создается греющим паром выпарного аппарата и конденсатором обезвоженного этанола).


Преимущества:

- минимальное время простоя (из-за низких эксплуатационных расходов и отсутствия регенерации);
- максимальная степень обезвоживания (за счёт высокой мембранной селективности);
- низкий уровень эксплуатационных расходов и энергетических затрат;
- минимизация влияния человеческого фактора на процесс;
- оперативность пуска и остановки.

Недостатки:

- высокие первоначальные инвестиции;
- ограниченный срок работы мембран.

«Vapor permeation» метод

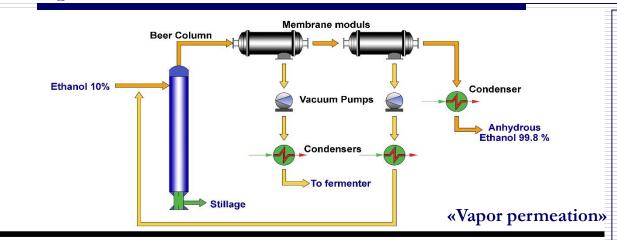
Параметры работы		
производительность по готовому продукту	100,0	м3/сутки
концентрация алкоголя в готовом продукте	99,8	%, масс.
производительность по исходному продукту	104,0	м3/сутки
концентрация алкоголя в исходном продукте	94,0	%, масс.
количество возврата (рецикла)	4,0	м3/сутки
концентрация алкоголя в возврате (рецикле)	2,0	%, масс.
потребляемые ресурсы:		
- греющий пар (Р=5 бар(изб.); t=158,8 °C)	45,0	т/сутки
- электрическая пощность (общая)	50,0	кВт
- охлождающий агент ($t_{вход}$ =30,0 0 C; $t_{выход}$ =45,0 0 C)	2400,0	м3/сутки
- охлождающий агент ($t_{\text{вход}}$ =3,0 0 C; $t_{\text{выход}}$ =10,0 0 C)	240,0	м3/сутки
дополнительные затраты в связи с рециклом	4,0	%
количество обслуживающего персонала	1	чел./смену
ориентировочный объём инвестиций	•••	тыс. \$

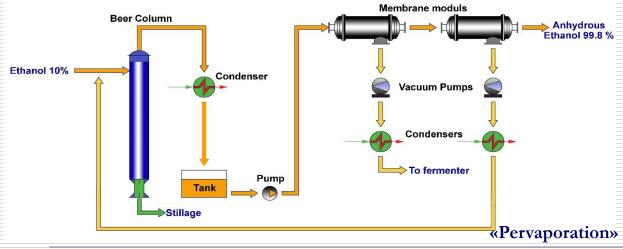
Мембраны на основе цеолита типа NaA

Цеолиты типа NaA используются для обезвоживания различных сред в процессе адсорбции. Размер пор в цеолите типа NaA составляет 0,41 нм, а гидрофильные способности данного цеолита отличаются высоким фактором разделения. Мембрана данного цеолита используется для тех же целей. В случаю протекания процесса в жидкой фазе его называют – «pervaporation», в случаи с паровой фазой – «vapour permeation».

Цеолитовые мембраны используются в виде тонкого слоя на керамической основе, что позволяет вести процесс с большими потоками. В промышленных масштабах предпочтительнее использовать нанесение цеолитового слоя на внутренние поверхности керамических элементов (трубок), во избежание механических повреждений и организации оптимального потока.

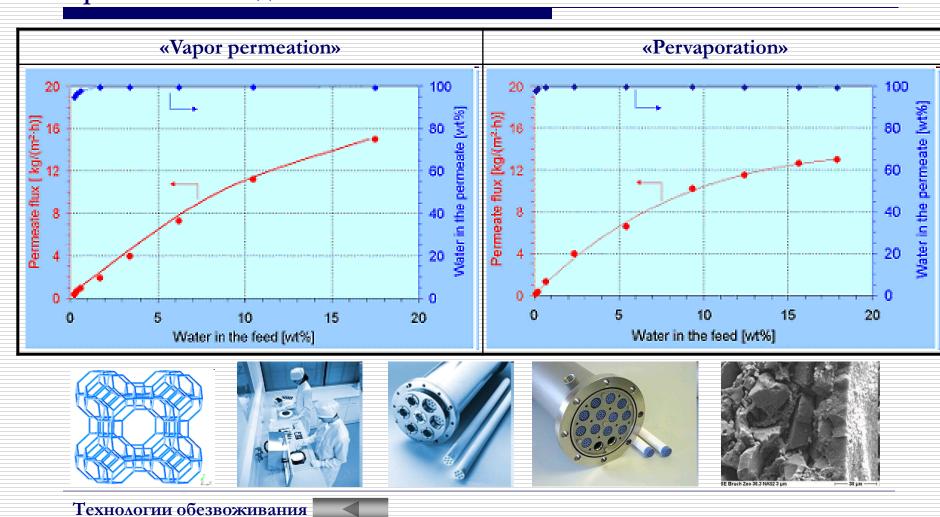
Цеолиты типа NaA в виде мембран могут наноситься на трубчатые основания, представленные моноканальными либо многоканальными трубами.


Мембраны NaA-цеолита могут использоваться для обезвоживания органических растворов. Например, обезвоживание этанола, для получения содержания воды в этаноле < 0,2 % (масс.), для достижения необходимого условия использования этанола в качестве топлива.

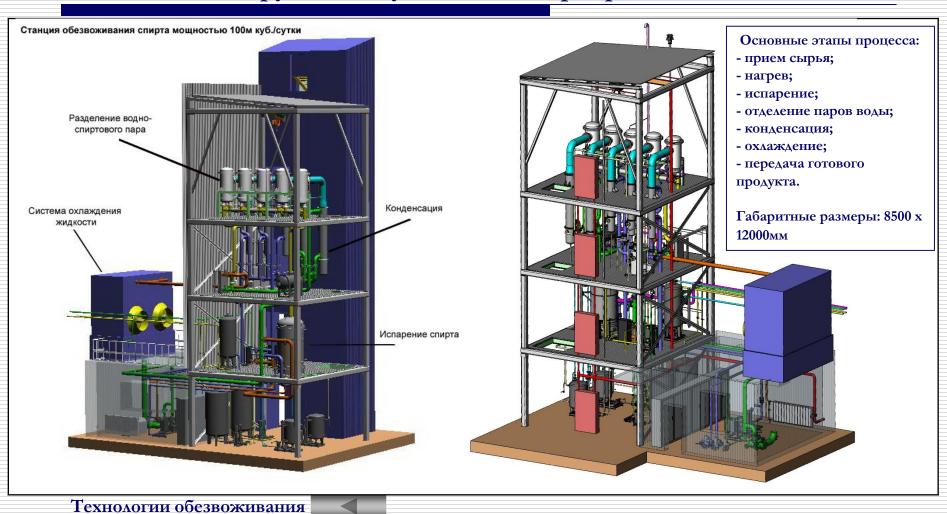

Использование цеолитовых мембран позволяет вести процесс обезвоживания при более высоких параметрах: P = 6,5 бар (абс.) и t = 135 °C.

Оборудование по обезвоживанию основаное на работе цеолитовых мембран благодаря своей высокой селективности, надёжности и долговечности однозначно превосходит существующие аналоги: насадочные колонны и полимерные мембраны.

Сравнение методов обезвоживания



Оборудование по обезвоживанию основаное на работе цеолитовых мембран является самым современным, экономичным и совершенным. Единственный вопрос состоит в способе обезвоживания: «Pervaporation» или «Vapor permeation» (в паровой или жидкой фазе). Для интеграции установки по обезвоживанию этанола в существующую схему спиртового завода, однозначно можно сказать, что способ «Vapor permeation» является более приемлемым и экономичным за счёт отсутствия процесса промежуточной конденсации паров этанола выходящих из ректификации.



Сравнение методов обезвоживания

Компоновка оборудования установки «Vapor permeation»

